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Abstract
Based on the experimental work by Boscaino et al on the EPR transient nutations
(TNs) and free induction decay (FID) in solids, we propose the modified Bloch
equations (MBEs). In addition to the Tomita expression for power-dependent
parameter T2u, we give an original phenomenological expression for power-
dependent parameter T2v and tuning �. Both analytical (in the form of a Torrey
solution with these parameters) and numerical solutions of MBE are obtained
for TN and for different FID regimes with very good agreement between theory
and experiment. We also discuss the meaning and role of the instantaneous
diffusion mechanism in the transient pulse experiments.

1. Introduction

In a series of papers [1–6], Boscaino and his co-workers have reported several important
experimental results on the EPR transient nutations (TNs) and free induction decay (FID)
in solids. They have also given an exhaustive qualitative discussion of their results and the
literature on the subject to date. The purpose of this paper is to present a quantitative description
of the Boscaino results as they do not agree with the existing theoretical predictions.

As is known [1–3, 7], the nutational response monitors the time evolution of a system,
initially at thermal equilibrium, toward a new stationary state under the action of an intense
resonant field Hmw(t) = 2Hmw cos(�t). The FID effect [4–6, 8, 9] is the emission of radiation
ensuing from the abrupt interruption of the pump field.

To describe the above effects and other resonance and relaxation processes in magnetic
resonance and in optics, the Bloch equations are widely used. In the rotating with frequency
� reference frame, these equations are

u̇ + �v +
u

T2u
= 0

v̇ − �u − χω +
v

T2v
= 0
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ẇ + χv +
(w − w0)

T1
= 0 (1)

and follow from the density-matrix equations of motion for a two-level quantum system. In
the case of the magnetic resonance, u, v and w are the components of the homogeneous spin-
packet magnetization. Ordinary Bloch equations (OBEs) properly (1) include two constant
phenomenological relaxation parameters, T1 and T2u = T2v = T2 = �−1

2 , the power-
independent tuning parameter � = ω0 − �, where ω0 is the transition frequency, and the
induced Rabi frequency χ = γHmw, where γ is the gyromagnetic ratio.

In experiments [1–6], whose results we propose to discuss below, one deals with the
inhomogeneous spin systems. Hence, one assumes an inhomogeneously broadened resonance
line with a Gaussian profile and a standard deviation σ :

g(ω) = (2π)−1/2σ−1 exp(−ω2/2σ 2) (2)

where ω = ω0 − ω00 measures the spectral distance of the generic spin (ω0) from the mean
frequency ω00. To obtain the nutation signal of the whole system V (t), one has to solve
equations (1) for the generic spin ω and integrate over the distribution g(ω). The approximate
solution, valid under the conditions (i) centre excitation and (ii) T1 � T2; (iii) χ � T −1

1 , �2,
is given by [2, 7]

VB(t) ∝ J0(χt) exp(−�Bt) �B = 1/2T2. (3)

Here subscript B indicates belonging to the ordinary Bloch model with constant T1 and T2.
The zeroth-order Bessel function J0(ωt) (as in equation (3)) describes the reversible damping
caused by the inhomogeneous broadening [7]. The second factor shows that the irreversible
decay due to the relaxation interactions is a single exponential function with the constant decay
rate.

In contrast to this theoretical prediction, the observed decay [1–3] is faster than expected
and depends on the driving-field intensity. The power dependence of the decay rate � is well
described by a linear dependence of � on the induced Rabi frequency χ = γHmw [2]:

� = α + βχ. (4)

Furthermore, parameter β increases on increasing spin concentration n0 [3].
In the case of FID experiments [4–6], it was found that the decay of the signal also depends

on the driving-field intensity but is much slower than expected on the basis of the OBE.
Similar results are observed in experiments on optical FID [10, 11]. Thus, it follows from

experiments [1–6, 10, 11] that the phenomenological parameter T2 in (1) is power dependent.
To explain the observed experimental results, several possible origins of the amplitude-

dependent decay have been considered. In particular, the non-Bloch behaviour of the FID
rate has been ascribed to the fluctuations of the resonance frequency ω0i of the active centres
and/or of the field source [12–14]. Shakhmuratov et al [15] proposed the modified Bloch
equations (MBEs) based on the assumption that the active centres experience not only the
coherent driving field but also a stochastic field. The stochastic field in turn is supposed to
depend linearly on the amplitude of the coherent field.

Our approach to the decay processes of the TN and FID to be considered below is
the opposite to that in the previous publications [12–15] (see also other references therein).
Namely, we emphasize that in all the transient phenomena under consideration we are dealing
with an essentially coherent exciting field [3] and detect a coherent response of the system
of coherently excited spins/atoms. Of course, any kinds of interaction in the system reduce
the coherence and lead to damping. In the case of Boscaino experiments, the amplitude-
dependence of the decay rate �(χ) arises from the magnetic dipole–dipole interaction of
active spins. More precisely, the decay rate arises from the interaction of an active spin with
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the rotating in the perpendicular to the applied field H0 plane components of the local dipolar
field Hloc(u, v) of the other active spins:

Hloc(u, v) = |H⊥(u, v)| ∼
[ ∑

(u2
i + v2

i )

]1/2

where ui , vi are functions of χ . In its turn, Hloc causes changes in spin orientation. Because
of the inhomogeneous broadening, each spin has its own resonance frequency and phase so
that the net effect of the local field is noisy in nature and led to the homogeneous broadening
characterized by �(χ). Nevertheless, �(χ) is expressed in terms of nonrandom functions
ui(t) and vi(t). In the next section we give explicit expressions for the intensity-dependent
parameters T2u, T2v and � forming the basis for our modified Bloch equations (MBEs) (1).
Sections 3 and 4 are devoted to theoretical and numerical study of TN and FID respectively on
the basis of MBE. The relation of parameters T2v(χ) and �(χ) to the instantaneous diffusion
(ID) mechanism [16] as well as other results of previous sections are discussed briefly in
section 5.

2. Modified Bloch equations

In accordance with experiments [1–3], we have to take into account the power dependence
of T2u, T2v and of the tuning parameter �, that is of the transition frequency ω0. For an
inhomogeneously broadened system one has

� = �0 + ω + �ω (5)

where �0 = ω00 −� and ω00 is the central frequency of the inhomogeneously broadened line.
In the case of centre excitation (as in experiments [1–6] and accepted here), �0 = 0. Finally,
�ω gives the intensity-dependent shift of the transition frequency due to change in the z-
component of the local magnetic field. Indeed, driving field Hmw(t) changes the z-components
of the magnetic moments of the paramagnetic centres (in experiments [1–6] one deals with
centres of effective spin S = 1/2) and, as a consequence, it changes the z-component of the
magnetization Mz:

�Mz(t) = M0 − Mz(t) =
∫ ∞

−∞
[w0 − w(�, t)]�n2(�, t) d�

�n2(�, t) =
(
n0

2
− n20

)
S(�, χ)

1 + S(�, χ)
{1 − exp[−(1 + S(�, χ))t/T10]}g(�)

S(�, χ) = 1

4

T1�2vχ
2

�2 + �2
2v/4

T −1
10 = w21 + w12 = T −1

1 . (6)

Here �n2(�, t) = n2(�, t)−n20(�) is the change in the spectral concentration of the excited
spins n2(�, t) (with initial equilibrium value n20(�)) during the excitation by Hmw(t) and
obtained as a solution of the rate equation

ṅ2(�, t) = −(w21 + W21)n2(�, t) + (w12 + W12)n1(�, t)

n1(�, t) + n2(�, t) = n(�) = n0g(�) n1 + n2 = n0. (7)

Here w21 is the transition probability per second for a spin from excited level 2 to ground
level 1, w12 is the probability for the reverse process, W21 = 2πχ2gL(ω) and W12 are the
probabilities for induced transitions 1 ↔ 2, and gL(ω) is the usual Lorentzian profile. In
equation (6) S(�, χ) is the spectral saturation parameter. The definition of relaxation rate
�2v = T −1

2v is discussed below. With the driving field switched off, the system is relaxed to
the equilibrium state with the relaxation time T10 which we identify with T1 in equations (1).
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The change in the demagnetizing field �Hdemag ∼ �Mz leads to the time-dependent
change of the Zeeman frequency as follows:

�ω(t) = aω�Mz(t) (8)

where aω is a parameter.
As noted in the introduction, the transverse components of the magnetization contribute

to the intensity-dependent damping. One has to distinguish between the damping for the
u-component (along which field Hmw(t) is directed) described by decay rate �2u = T −1

2u and
that for the v-component with decay rate �2v = T −1

2v . It is shown by Redfield [17] that Hmw

suppresses the phase relaxation process for the u-component. Following [18], we have

�2u = �0

1 + r2χ2
+

1

2T1
(9)

for closed systems, and

�2u = �0

1 + r2χ2
+

1

T1
(10)

for open systems. Here �0 = T −1
2 is the relaxation rate at small values of Hmw and r a

parameter, associated with the correlation time of dipole–dipole interactions [18]. Note,
however, that the relaxation process associated with �2u is of little importance for TN, as
will be seen below.

While �2u decreases with increasing Hmw, decay rate �2v increases due to the building
up of the transverse component of dipole moments

m⊥(�, t) = [u2(�, t) + v2(�, t)]1/2 (11)

during the excitation process. We approximate �2v by the following expression:

�2v = �0

[
1 +

1

(2)T1�0

]
+ a�

∫
|m⊥(�, t)|�n2(�, t) d�

�n2(t) =
∫

�n2(�, t) d�. (12)

The first term on the right-hand side of equation (12) describes the contribution to the damping
from the thermally excited spins and from the spin-lattice interaction, the second being due to
the coherently excited spins. For χ → 0, �2v coincides with �20 (9) or (10).

It is obvious from equations (5), (7), (10) and (11) that parameters� and�2v are dependent
on u(t), v(t) and w(t); therefore, the modified Bloch equations are inherently nonlinear.

3. Transient nutations

3.1. Theory

It follows from (6) and (12) that required parameters �2v , �n2(�, t) and variables u(t), v(t)
are interrelated. We construct�n2(�, t), �n2(t), �ω(t) and�2v(t) by the method of iteration.
In the zeroth approximation (k = 1), for u(t), v(t) and w(t) we use the well known Torrey
solution [7] corresponding to conditions (i)–(iii) in the introduction. With equations (9) or
(10) for �2u, �2v = �0 and � = ω, the solution is given by

u = w0

{
c

c2 + �2uT1
+

c

s

(
1 − s

c2 + �2uT1

)
exp

(
−c2 + �2uT1

s

t

T1

)

−c

s
exp

(
− 1

2

(
�2v + �2u − �2u − T −1

1

s

)
t

)
cos(

√
sχt)
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Figure 1. Excited spin concentration, �n2(t) = n2(t) − n20, resonance frequency shift, �ω(t),
and damping parameter, �2v(t), versus excitation time, t . The Rabi frequency χ = 2π × 107 kHz,
k is the iteration number. For other parameters relevant to figures 1–4 see the text in section 3.2.

+
c

s3/2χ

[
1

2s

(
c2

(
2

T1
− �2v − �2u

)
+ 2�2u − 1

T1
− �2v

)
− 1

T1

]

× exp

(
− 1

2

(
�2v + �2u − �2u − T −1

1

s

)
t

)
sin(

√
sχt)

}

v = w0

{
− �2u

χ(c2 + �2uT1)
− c2(�2uT1 − 1)

χT1s

(
1

s
− 1

c2 + �2uT1

)
exp

(
−c2 + �2uT1

s

t

T1

)

+
1

sχ

[
c2

s

(
�2u − 1

T1

)
+

1

T1

]
exp

(
− 1

2

(
�2v + �2u − �2u − T −1

1

s

)
t

)

× cos(
√
sχt) − 1

s1/2
exp

(
− 1

2

(
�2v + �2u − �2u − T −1

1

s

)
t

)
sin(

√
sχt)

}

w = w0

{
c2

(c2 + �2uT1)
+

c2

s

(
1 − s

c2 + �2uT1

)
exp

(
−c2 + �2uT1

s

t

T1

)

+
1

s
exp

(
− 1

2

(
�2v + �2u − �2u − T −1

1

s

)
t

)
cos(

√
sχt)

+
1

s3/2χ

[
1

2s

(
c2

(
�2v + 3�2u − 4

1

T1

)
+ �2v − 1

T1

)
+

1

T1

]

× exp

(
− 1

2

(
�2v + �2u − �2u − T −1

1

s

)
t

)
sin(

√
sχt)

}
. (13)

Here c = �/χ = ω/χ , s = 1 + c2.
Solution (13) is used in equations (6), (8), (11) and (12) to obtain expressions for

�n2(�, t), �n2(t), �ω(t) and �2v(t); the latter are, in its turn, inserted into equations (13)
and so on. Really, the expressions for �n2(t), �ω(t) and �2v(t) get their final form after
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Figure 2. Calculated curves of the nutational response S(t) ∝ |V (t)| at Rabi frequency
χ = 2π × 107 kHz. The full line is the numerical solution of the modified Bloch equations (1);
the line with symbols is the modified Torrey solution (13) and the dotted line is numerical solution
of the ordinary Bloch equations.

five cycles and do not vary further (see figure 1). Note that the time dependence of �ω(t) is
modulated with the Rabi frequency whereas for �n2(t) and �2v(t) one has the double Rabi
frequency. Expressions (13) obtained in such a way represent the modified analytic Torrey
solution and will be used below in FID studies. Remember, however, that this solution is
subject to conditions (i)–(iii) above and is only an approximate one.

The MBE (1) with thereby obtained parameters �2u(t), �2v(t) and �ω(t) are further
solved numerically for various values of the Rabi frequency χ . The experimentally observable
signal is S(t) ∼ (U 2(t)+V 2(t))1/2 ≈ |V (t)|, where U(t) and V (t) are obtained by integration
of u(t) and v(t) over the inhomogeneous line profile. Note that, as turns out from the numerical
calculations, though U(t) �= 0, it is smaller by two or three orders than V (t).

3.2. Numerical calculations

Examples of the nutational response S(t) are given in figure 2. The full curve shows the
TN signal at χ = 2π × 107 kHz obtained as a numerical solution of the MBE (1) with
parameters �2u(t), �2v(t) and � given in the preceding subsection. To obtain this result,
figure 1, and other results of this section, the following values of the parameters were used:
aω = 1.78 × 10−9 cm−3 c−1, a� = 1.2 × 10−8 cm−3 c−1, r2 = 2 × 10−9 c2. Unfortunately,
in references [2, 5, 19, 20] there is considerable scatter in the values of parameters T2, σ

and n0 presumably relevant to one and the same sample with T1 = 5 × 10−3 c. Here
we take T2 = �−1

0 = 1.2 × 10−4 c, σ = 2π × 0.25 MHz (T ∗
2 = σ−1 = 0.63 µs),

n0 = 4 × 1016 cm−3 characteristic for sample N1 in [2] and the equilibrium value of the
polarization p0 = 3.3687 × 10−2.
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The dotted curve in figure 2 is the TN signal obtained as a numerical solution of the OBE
and the line with symbols is the response obtained by use of the modified Torrey solution (13).
It is seen from figure 2 that the decay of the MBE response is considerably faster than that of
the OBE response and the modified Torrey signal decayed approximately with the same rate
as the MBE response.

Further, for the MBE response we have examined the decay function K(t) [2] representing
the effect of the irreversible relaxation and for the ordinary Bloch model given by K(t) =
exp(−�Bt) (3). As in [2], we considered only the maxima of the signal (see figure 2): the
values Si (i = 1, N ; N is the number of maxima) of the maxima were compared to the
extremes |J0|i (absolute values of maxima and minima) of the zeroth-order Bessel function.
The obtained values ofKi = Si/|J0|i were arranged in a plot ofK versus t , as shown by symbols
in figure 3 for two values of χ . One sees that the decay function K(t) is well described by
a single exponential as K(t) = exp(−�t), excepting the first maximum. The departure of
the first maximum from the straight line (noted also in [2]) is caused by the fact that the first
maximum of the signal appears at t > 0, while the first maximum of J0(χt) is at t = 0. The
calculated decay rate � depends on the input power: in figure 3 we have �/2π = 1.38 kHz
for χ/2π = 21 kHz and �/2π = 3.7 kHz for χ/2π = 107 kHz, in good agreement with
experiment [2].
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n 

 K
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dB
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Figure 3. Calculated decay function K(t). (a) Solid squares are calculated values, as determined
from the solid line of figure 2 by points (at the maxima) for χ = 2π×107 kHz; (b) open squares are
the same for χ = 2π × 21 kHz. The lines plot the single exponential functions K(t) = exp(−�t),
the best fit the calculated points, excluding the initial points (see text). One gets � = 2π ×3.7 kHz
(a) and � = 2π × 1.38 kHz (b).

We calculate K(t) at different power levels in a broad range of experimentally available
values of χ [2] with the result that K(t) in the whole range is well described by a single
exponential with the intensity-dependent decay rate � = �(χ). It is seen from figure 4
that this dependence is well described as a linear function of the induced Rabi frequency χ ,
equation (4), again in good agreement with experiment [2]. The calculated values of the
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Figure 4. Calculated TN decay rate, �, versus Rabi frequency, χ , for sample no 1 of [2]. Dots are
calculated points; solid line is the best fit straight line: � = α+βχ . α/2π = 0.96 kHz; β = 0.024.

quantities α and β in equation (4) are α = 2π × 0.96 kHz, β = 0.024, while experiment [2]
gives α = 2π × (0.78 ± 0.08) kHz, β = 0.024 ± 0.1.

4. Free-induction decay

4.1. Theory

FID response strongly depends on the excitation-pulse amplitude and duration tp, on the
inhomogeneous broadening of the resonance line etc. Schenzle et al [21] theoretically predicted
and Kunitomo et al [22] verified by NMR experiments that FID exhibits amplitude oscillations
if the following conditions are satisfied: (1) the inhomogeneous line width σ is very large
compared with the homogeneous one, (2) the pulse area χtp � 2π and (3) χ < σ . Further,
it was shown [21, 23] that with a preparation pulse of finite duration tp, the FID signal lasts
only for an additional period tp. Bearing the finite-pulse-prepared FID in mind, we observe
from figure 2 that description of the TN experiments by the modified Torrey solution (13) is
quite satisfactory. Therefore, expressions (13) can be considered as an initial value (u(0)(tp),
v(0)(tp), w(0)(tp)) for the FID prepared by an exciting pulse of any length tp, if one substitutes
tp for t there.

On the other hand, in experiments [4–6] the FID effect was observed after excitation of
the spin system to the saturated state. Hence, the initial value of the Bloch vector for a spin
packet in the FID process is given by the steady-state solution of equation (1):

u(0) = �χw0T2uT2v

D
v(0) = −χw0T2v

D
w(0) = (1 + �2T2uT2v)w0

D
(14)

D = 1 + �2T2uT2v + χ2T1T2v .



Bloch equations and transient EPR effects in solids 3483

0 2 4 6 8 10
-10

0

10

20

30

40

100

50

20

10

5  tp = 1 µs

FI
D

  i
nt

en
si

ty
  (

dB
)

time  (µs)

Figure 5. FID responses calculated in the MBE model prepared by pulses of different lengths tp .
χ = 2π × 54 kHz. Full and line–symbol curves are steady-state prepared FID responses in MBE
and OBE models respectively.

Note that the first terms in the curly brackets of equations (13) are nothing more than the
limiting case of equations (14) under conditions (i)–(iii).

After the switching-off the exciting-pulse at time t = 0, free decay of the transverse
components for a spin packet in our modified Bloch model is described by

u(�, t) = (u(0)(tp) cos(�t) − v(0)(tp) sin(�t)) exp(−t/T2v)

v(�, t) = (v(0)(tp) cos(�t) + u(0)(tp) sin(�t)) exp(−t/T2v). (15)

In expressions (14) and (15), T2u = 1/�2u is still given by formulae (9) or (10), but in the
definition (12) of �2v now we have �n2(�, tp), �n2(tp) and, in particular, (see equation (6))

�n2(�, tp → ∞) =
(
n0

2
− n20

)
S(�χ)

1 + S(�, χ)
g(�). (16)

Again, expressions for �n2(�, tp), �n2(tp), �ω(tp) and �2v(tp) are obtained by iteration.
The final expression for the FID signal is given by integration of u(�, t) and v(�, t) over
distribution g(�) (2).

4.2. Numerical calculations

First we consider the FID response for the pulse area smaller than 2π . Figure 5 shows the free
induction decay after excitation by pulses of different length with a reference Rabi frequency
χ = 2π × 54 kHz [5]. For short pulse length tp

∼= 1 µs the signal amplitude only increases
quickly from large negative values through zero to small positive ones, so the observable
intensity decreases at times t ∼= 1.5 µs. With increasing tp, FID intensity initially increases to
a maximum before decaying monotonically for larger t . For short (relative to T2) tp = 1–50 µs
the decay is not exponential.
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Figure 6. Oscillatory FID responses for T ∗
2 = 0.63 µs (a) and T ∗

2 = 0.063 µs (b). χ/2π = 200
and 300 kHz, tp = 10 µs.

Perhaps because of the periodic dependence of the signal on the pulse area, the maximum
and decay rate are varied with tp alternately. For tp � 100 µs, the signal monotonically
tends from above to the steady-state prepared FID, the decreasing part of which is a single
exponential function of time (full curve). The intensity of this signal at its maximum is
greater by 15 dB than that for the analogous signal calculated in the OBE model (line–symbol
curve in figure 5). With increasing χ this difference increases. In obtaining these and other
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Figure 7. Calculated responses of steady-state prepared FID at χ = 2π × 54 kHz for different
values of reversible relaxation time T ∗

2 = σ−1.

results below, the following values of the parameters were used: aω = 3 × 10−8 cm−3 c−1,
a� = 2.76 × 10−8 cm−3 c−1, r2 = 2 × 10−9 c2, T1 = 5 × 10−3 c, T2 = �−1

0 = 7.5 × 10−5 c,
n0 = 4 × 1016 cm−3 and, excepting figures 6 and 7, σ = 2π × 0.25 MHz.

In the case of large pulse area, χtp � 2π , one needs again to compare predictions of
the OBE and MBE models since strong driving field can significantly change the dispersion
and damping parameters. Examples of the oscillatory decay for χtp = 4π , 6π and pulse
length tp = 10 µs are depicted in figure 6(a) for σ = 2π × 0.25 MHz (T ∗

2 = 0.63 µs) and
in figure 6(b) for T ∗

2 = 0.063 µs. It is seen that in figure 6(a) the oscillations in the MBE
model are more damped than those in the OBE model. In the case of larger inhomogeneous
width (figure 6(b)), there is no significant difference between signals in the two models. That
is, here the signal behaviour is mainly determined by the large inhomogeneous width and not
by the homogeneous one. Note that in the system with large inhomogeneous line width the
signal lasts strongly for period tp, in agreement with [23]; at lower values of σ the oscillatory
response somewhat extends to times t > tp. In figure 6(a) (small σ ) the first maximum of
the FID amplitude decreases with increasing χ , while in figure 6(b) (large σ ) the opposite is
observed.

For different samples used in experiments [4–6] a broad range of inhomogeneous line
width is characteristic. Hence, it is useful to consider the FID dependence on this parameter
though other parameters for the samples are unknown. The FID responses for several values
of the reversible relaxation time T ∗

2 are shown in figure 7 for the case of steady-state excitation
with χ = 2π × 54 kHz. Solid circles in the figure again correspond to σ = 2π × 0.25 MHz
(T ∗

2 = 0.63 µs) and represent an exact copy of the experimental curve in figure 1 of [5] with
decay rate � = 2π × 78 kHz. For small values of T ∗

2 (solid line in the figure), the initial
part of the decay has an oscillatory character. For a given value of χ , the maximum of the
FID response initially rises with increasing T ∗

2 , then decreases, having a stable tendency to
broadening.
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Figure 8. Decaying part of steady-state-prepared FID signals for different values of the Rabi
frequency.

In the whole range of experimentally available values of χ [5], the decreasing part of the
FID prepared by steady-state excitation is a single exponential function (similar to the curve
with solid circles in figure 7) with power-dependent decay rate, as shown in figure 8.

From the time dependence of the FID similar to that shown in figure 8, we have determined
the decay rate, �(χ), for a set of values of χ . The open circles in figure 9 depict the dependence
obtained in such a way. Experimental results of Boscaino and La Bella [5] (up triangles), the
theoretical dependence [5, 24]

� = (1/T2)�1 + (1 + χ2T1T2)
1/2� (17)

following from the OBE (solid squares), and that of the Redfield theory in the high-field limit

� = χ/
√

2 (18)

(solid circles) are also shown in this figure. One sees that �(χ) obtained here numerically
from equations (1) with �2u(χ) and �2v(χ, t), for small fields follows the OBE result; at
4 kHz � χ/2π � 20 kHz it undergoes a crossover from the Bloch to the Redfield regime;
with further increasing χ asymptotically tends to the Redfield limit and in the whole range of
measurements coincides very well with experiment [5].

There is a need to specify a peculiarity in the free induction decay. The irreversible
damping of the FID response is given by the exponential factor in equations (15). Since
�2v(χ) > �0 (as is seen, for example, from figure 4), the more faster decay in the present
MBE model was to be expected, contrary to the experiment, than in the ordinary Bloch one.
Curves 1 and 2 in figure 10 show the decay at χ = 2π × 100 kHz in the present model:
curve 1 is without considering the exponential factor in equations (15) and curve 2 is with that
factor. Similarly, curves 3 and 4 present the FID decay in the OBE model: curve 3 is without
considering the exponential factor with T2 = �−1

0 = 7.5 × 10−5 s and curve 4 is with that
factor. It is seen that the role of irreversible damping in the OBE model is negligible and the
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Figure 9. Calculated FID rate, �/2π , versus Rabi frequency, χ/2π , for sample no 1 of [5] (open
circles). Solid squares and solid circles are the theoretical dependences expected from the ordinary
Bloch theory (17) and from the Redfield one (18) respectively. Solid triangles are experimental
data of Boscaino and La Bella [5].

decay process is mainly determined by the reversible dephasing of the coherent state produced
during the steady-state excitation. In our MBE model, too, though the large irreversible
damping somewhat influences the decay (compare curves 1 and 2), the last is mainly governed
by the coherent state formed during the steady-state excitation. Figure 10 shows that this state
is essentially different for two models considered. It is important that parameter T2u(χ), which
in the TN is of no any importance, has a significant impact on the steady-state formation. In
particular, the initial value of the dispersion, u(0), which mainly determines the FID signal, is
proportional to T2u(χ) (see expressions (14)).

5. Discussion and conclusions

Since the first experiments on the electron spin echoes (ESEs) in solids, it was established that
they cannot be explained in the framework of the OBE. The discrepancy between experiment
and theory rises with increasing driving-field intensity (see, for example, [19, 20]). As we see
above, the same is true for other related transient effects in solids, namely TN and FID. Finally,
there is much work on the same transient effects in optics with the same conclusion.

Beginning with the famous paper by Klauder and Anderson [16], various statistical theories
of the above transient effects were elaborated. In particular, the mechanisms of spectral
diffusion (SD) and of instantaneous diffusion (ID) [16] are widely used to explain the various
and complicated relaxation processes in those fields.

Although there is no any doubt in the existence of SD and ID, in our opinion the
interpretation of the ID mechanism as a relaxation one only is incomplete. As is shown
earlier [25], in addition to the usual nonlinear excitation mechanism of the echo-formation,
the ID mechanism is a source of two new nonlinear ones, namely the intensity-dependent
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Figure 10. Calculated FID response in the present MBE model (curves 1, 2) and in the OBE model
(curves 3, 4): curves 1 and 3 are without considering the exponential factor in equations (15)
and those 2 and 4 are with that factor (with T2 = �−1

0 = 7.5 × 10−5 s for the OBE model).
χ = 2π × 100 kHz.

dispersion and intensity-dependent damping. Phenomenological expressions (8) for �ω(t)

and (12) for �2v(t) present the ID mechanism in the TN effect and those with t = tp (and,
in particular, with tp → ∞) in the FID effect. In summary, we conclude that the meaning of
the ID mechanism consist in coherent variation of the spin components by a coherent driving
field (‘instantaneous’ in the pulse-echo experiments and more or less continuous in transient
nutations, for example); the variation of longitudinal components, mz, leads to the intensity-
dependent dispersion and that of transverse ones manifests itself as the intensity-dependent
damping. Moreover, the above noted nonlinear excitation mechanism is a consequence of the
ID mechanism as well since it consist in the nonlinear, in fact, interaction of the driving field
with the coherently varied transverse spin components.

It is worth noting that unlike the common statements that the ID mechanism acts during
the excitation pulses, in the echo-formation process the power-dependent dispersion, �ω(t),
is formed during the excitation pulses but acts as nonlinear mechanism (as a source of the
power- and time-dependent coherent phase) between and after the pulses (see also note on
parameter aω below).

Returning to the concrete results in the two preceding sections, it is clear why the TN decay
is faster than expected from the OBE model. Indeed, the Redfield slowing down described
by �2u affects the dispersive component U(t) ∼ 0 only, while damping of the absorptive
component V (t) (and, really, of the whole response) is governed by large and intensity-
dependent �2v(χ, t). Referring to figures 1, and 3 or 4, we see that there is a significant
difference in magnitude and behaviour of �2v(χ, t) and �(χ). While �2v(χ, t) increases in an
oscillatory manner to value �2v(χ, tp) > �(χ) during the excitation, the intensity-dependent
TN decay rate �(χ) is constant in time.

Results of section 4 show the importance of the preparative stage both in pulse and steady-
state prepared FID. In the last case, as we already pointed out in the preceding section, the
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decay is mainly determined by the steady-state preparation stage where parameter T2u(χ) is
of more importance than �2v(χ, t).

As a summary to figures 4 and 9, we have to say that the TN and FID give somewhat
different information about irreversible damping in the system.

We call attention to the large difference in the magnitude of parameter aω in the two
processes: aω = 1.78 × 10−9 cm−3 s−1 in the TN process, and 3 × 10−8 cm−3 s−1 for the FID
effect. This is caused by the circumstance that the z-component of the Bloch vector in the TN
process experiences fast oscillations averaging the intensity-dependent shift of the resonance
frequency. On the other hand, in the FID effect w = w(0) is time independent and hence the
shift is effective.

Very good agreement between the solutions of the MBE based on intensity-dependent
parameters (5), (8), (9) or (10) and (12), and experimental results on TN [2] and on FID
[5] unambiguously confirms the correctness of those parameters and MBE (1) in general.
In particular, results of figures 3 and 4 show that power-dependent damping (12) as the ID
mechanism is decisive in the TN effect. On the other hand, we can say that expressions (9) or
(10) and the first term in the right-hand side of (12) correctly describe the possible contribution
of the SD mechanism.

In conclusion, we have presented a modified version of the Bloch equations with specific
power-dependent relaxation and dispersion parameters. These parameters take into account the
contributions of both the instantaneous and spectral diffusion mechanisms. Further, analytic
and numerical solutions of MBE are applied to the detailed experiments by Boscaino et al
on EPR transient nutations and free induction decay in solids. Good quantitative agreement
between the theory and experiments is obtained in whole range of experimentally available
field intensities and several parameters contained in the theory are estimated. In the framework
of MBE, we have theoretically considered also properties of the oscillatory FID which, to our
knowledge, has yet to be observed in EPR.
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